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It has been found that ventilated cavities extending behind hydrofoils, plates, 
and other two-dimensional bodies, oscillate when the air supply rate is sufficient 
to reduce the cavitation number to about one-fifth of its natural value. As the 
rate increases further, higher modes of oscillation OCCUT inwhich the cavity-water 
interface supports several waves that are convected downstream towards the 
wake, which, owing to a pinching-off action replacing the usual entrainment sink, 
consists of a sequence of large bubbles drifting downstream. A theory of such 
flows that allows both for the convected velocity fluctuations in the cavity, and 
for the transport of bubble volume down the wake, is given in this paper. Coupled 
with a rather simple phenomenological relation between the pressure fluctuations 
within the cavity and the departure of the pinched-off rear portion of the 
cavity-explained in terms of the action of the re-entrant jet-this theory suc- 
cessfully predicts the resonance frequencies obtained in experiments by 
Silberman & Song. 

The theory also provides a solution of the more general problem of determining 
the fluctuations in the pressure distribution over the whole surface of the body, 
when it is in a prescribed unsteady motion along its axis of symmetry (the theory 
is confined to symmetrical bodies and flows). Thus the growth in drag due to 
a sudden increment in the upstream velocity can be predicted, and also the 
damping forces acting on the body when it is forced to oscillate at a given 
frequency. It is shown that in all cases the body is unstable. 

One important feature of the mathematical model chosen is that it completely 
avoids the presence of a time-dependent sink at infinity-with its associated 
infinite pressures-by conserving total volume of wake and cavity in just the 
same way as vorticity is conserved in unsteady aerofoil theory. 

1. Introduction 
The cavity that forms behind a submerged body moving at speed through 

a liquid is continuously supplied with gas and vapour from the cavity walls, a 
mixture that leaves by entrainment in the turbulent foam and liquid usually 
found at  the end of the cavity and introduced into it by a re-entrant jet (see 
figure 1). Bubbles of gas and vapour pass downstream in the wake and are quickly 
reabsorbed into the liquid, which of course is most commonly water. Despite 
some fluctuation in the re-entrant jet, under steady flow conditions this natural 
cavity is quite stable, having a constant shape and a constant cavity pressure pc,  
approximately equal to the vapour pressure of the liquid. The most important 
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parameter descriptive of the flow is the cavitation number CT F (pa -p,) /&pP,  
where pa and U are the pressure and velocity in the undisturbed flow well 
upstream of the body andp is the liquid density, assumed to be constant. Cavities 
will not form unless CT is small enough, and they increase in length as v is made 
smaller. Now, while CT can be controlled through pa and U ,  in some experimental 
circumstances it is of greater convenience to alter pe  through the introduction of 
air or other gas into the cavity through the base of the body. This reduces g, and 
a so-called ventilated cavity will result when the air supply rate Q is large enough 
to reduce CT to the cavitation point. 

Gas and vapour 

f / r f  / 

FIGURE 1. A natural cavity. 

The relationship between Q, u and g,-the natural cavitation number before 
cavitation-has been examined in an extensive set of experiments by Silberman 
& Song (1961), whose work has provided the stimulus for the present study. For 
two-dimensional cavities they arrive at  an empirical law of the linear form 
Q = a-  ba/uv, provided u/gV 2 0.2, and the corresponding cavities are quite 
stable. The only changes from natural cavitation are a substantial increase in the 
number of bubbles persisting in the wake, and some suppression of the re-entrant 
jet. However, for a critical value of crla, below 0-2 the ventilated cavity starts to 
vibrate violently, changing its length and width periodically, and the cavity 
pressure pc oscillates about p,, which denotes the mean value. The re-entrant jet 
is completely suppressed during that part of the cycle in which the cavity length 
is a maximum. Further increase in Q has no immediate effect on cT/cru;  the 
oscillations become more violent, but their frequency remains constant. How- 
ever, when a still higher value of Q is achieved, the cavity quickly increases in 
average length and pressure, and g/vU suddenly drops. The new cavity vibrates 
less vigorously than the first, and its surface now carries a wave-form of two 
wavelengths that is convected downstream with the local stream velocity 
q1 = U (  1 + g)B.  Silberman & Song term this a two-stage cavity. Further increases 
in Q cause additional discontinuous changes in the average length L, the oscilla- 
tion frequency v, and inpl and g/uV, and as many as six stages have been identified 
for flow past the two-dimensional normal plate. The nth stage supports n waves 
over the cavity length, moving downstream towards the cavity's closed end S at 
a speed of about ql. Cavities of finite span are found to possess the same charac- 
teristics as described above for the two-dimensional types. 

The key to the phenomenon just described lies in the way that vibrating 
cavities part with their cavity air. Steady entrainment no longer occurs, but is 
replaced by a fission process in which the last wave is periodically pinched off a t  
a time when the cavity pressure is too low to sustain a cavity of greater than 
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average length. Figure 2 depicts four stages in a complete cycle for a three-stage 
cavity. Incidentally the time scale shown is related to real time t by r = 2rUt/L, 
where r is the ratio of the mean speed over the cavity, ql, to the undisturbed 
speed U .  Thus 

r = ql/u = ( l + U ) i ,  u = (pm-pl)/$pu2. (1) 

u*< 0 

u* > 0 

Dependence of u at section AA' and 
of cavity pressure with time 

FIGURE 2. Evolution of a three-stage cavity. 

The process shown in the figure is an idealization based on the description given 
by Silberman & Song. At 7 = 0 ,  when the last wave is just pinched off, the 
re-entrant jet commences strongly, shooting water into the cavity at such a rate 
that the air supplied by the body together with this water is more than sufficient 
to keep pace with the expansion of the cavity caused by the convection down- 
stream of the next wave. The result is that the cavity pressure increases steadily 
from the low value it achieved on the previous cycle to a maximum at r = 216, 
at which stage the re-entrant jet is considerably weakened and the air-water 
foam is being removed by entrainment just as in steady flow. Now the continuing 
lengthening of the cavity occurs with very little new water being added to it, so 
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that the pressure falls. This reduced pressure decrees a narrower and shorter 
cavity-a consequence of the usual steady-state theory-and this is achieved 
by a repetition of the pinching-off process. The cycle then repeats. 

Also shown in figure 2 is the dependence on T of u*, the slope of the cavity surface 
at AA'. The lagging of (pc -p l )  behind u* by 90" is an important experimental 
result, and supports the only phenomenological element we shall introduce into 
the theory. One final, and minor point is that, as shown in the figure, we have 
chosen as reference length L not the mean cavity length, but the shortest length 
in the cycle. The reason is that Silberman & Song found experimentally that the 
minimum length is closest to the length found for non-vibrating cavities at the 
same value of g. 

The theory we shall develop below aims not only at predicting the frequencies 
of vibration of the cavities, with the body held in a fixed position, but also at the 
solution of the more general problem of determining the fluctuations in the 
pressure over the surface of the body, when it itself is in a prescribed unsteady 
motion along its axis of symmetry. Thus, for example, we hope to be able to 
predict the growth of drag due to a sudden increment in the reference velocity U. 
Another question in which we are interested is the stability or not of oscillatory 
motions of the body; i.e. are there induced forces in phase with the velocity 
tending to augment the amplitude 1 The answers to these questions are given in 
$0  7-9, but before this the physical model to be adopted and its mathematical 
consequences must be developed. 

2. The physical model 
An outline of the theory of the steady cavitating flow past a symmetrical body 

at zero incidence will be given in 0 4, and the unsteady component of the flow will 
be treated as a linear perturbation on this basic steady flow. Thus the unsteady 
boundary conditions will be imposed at the surface of the body and the cavity 
as determined by the steady flow, but, as it will become clear, this will not mean 
that the cavity length must remain fixed during the perturbation. 

Let 8 denote the flow direction relative to the Ox-axis, the axis of symmetry 
of the flow; then in the steady flow the value of B on the streamline y = 0 joining 
the rear of the cavity S to x = 00, say u, will be zero ; but in the unsteaciy flow u 
need not be zero (see figure 3). Certainly with vibrating ventilated cavities, it  is 
clear from figure 2 that u will not vanish for a considerable distance downstream 
of S, whereas with natural cavities u will quickly decay to zero owing to the rapid 
re-absorption of the vapour from the host of small wake bubbles. The function 
u(s), where s is distance measured along a streamline, is introduced to account 
for the unsteady component of the wake displacement thickness due to the con- 
vection of bubbles, large and small, downstream of X. While the underlying 
steady stream of bubbles will displace streamlines outwards, it will not contribute 
to u. One rather important restriction must be imposed on u, namely that the 
total volume of the cavity, plus the perturbation volume in the wake, must, a t  
most, increase a t  a constant rate. This means that the source at  infinity, required 
to accommodate the liquid displaced by the changing volume of cavity plus wake, 
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will be time independent, as required by the theorem analogous to Helmholtz's 
theorem on conservation of circulation (see Benjamin 1964 and Woods 1964 for 
a fuller discussion). Without this restriction the pressure at infinity is unbounded. 
Hence the flow depicted in figure 3 has a constant sink at infinity receiving the 
mean flux of volume convected by the bubbles, while the superimposed perturba- 
tion volume is positive or negative in a region according to whether there is 
a surplus or a deficiency in the wake bubbles in that region, and the perturbation 
in the sum of the wake and cavity volumes is zero. Now the waves, or other 

Steady flow boundary End of perturbation 

FIGURE 3. The physical model. 

perturbations in the wake, may be assumed to be convected downstream with 
velocity U ,  unchanged in shape, apart from a possible decay in amplitude. Thus 

u(s, t )  = exp [ - e(s - sl)] u(sl, t - ( s  - sl)] U ) ,  (2) 

s1 being the value of s at the cavity end S. 
In  addition to the restriction on u imposed by the time independence of the 

sink a t  infinity, we could add the requirement that the waves on the cavity 
surface upstream of S are transmitted smoothly through 8. However, as will be 
seen, this smooth-flow condition completely suppresses pressure fluctuations 
within the cavity, so that a singularity at S is required in a model for the 
resonance shown in figure 2. 

In  incompressible fluid dynamics the variable harmonic to 8 is logq, where 
q is the fluid speed. We shall write 

(3) and 

where w = q5 +is is the complex stream function and z = t ~ :  + iy. In (3) note that 
w, not x,is chosen as the independent variable, so,in accordance with the lineariza- 
tion mentioned above, w is the stream fuiiction of the mean steady flow, e.g. over 
the cavity surface 

dw = dq5 = q,ds = rUds. 

More convenient independent variables are dct Clned by 

1 l2 = log (U/q), i.e. q = U e-n 
x = Q + ie = log ( U  dzldw), i.e. U dx = exdw, 

(4) 

and a = -cosg, g = y+iq, (6) 

where q5c and q5s are the values of q5 at the separation point C and the singularity 
S, and we have slightly modified the meaning of L as indinatcd in figure 4. The 
5 plane, also shown in figure 4, places the body on y = 0,O < q i qo, the wake on 
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y = f T,  0 < 7 < co, and the cavity surface on 7 = 0, - n- < y < n-. Its merit will 
become clear later. 

The pressure p is given by 

the subscript ' 0 ' denoting steady values. (Steady, constant values over the cavity 
like p1  and q1 will not have this subscript added.) In ( 7 )  we have integrated along 

z plane 

@ = 0 from r$ = - 00. In  the cavity the pressure pC will be constant a t  any instant 
of time, sound waves through the vapour being instantaneously transmitted on 
the hydrodynamic time-scale, thus, by (3), (4)' ( 5 )  and ( 7 )  and some obvious 
linearizations, 

arc arc -+- = 0, rc = (Qc-Ql), on p = 0, - 1 6 [ < 1,  a t  a7 

where is a particular value of 8, 
r = (2rU/L)t (9) 

is a 'reduced' time scale for the cavity disturbance, supposed to be initiated at  
t = 0, and where QC = log (U/qc) ,  fz, = log (U/q l )  so that rC z (ql - qc)/ql. It has 
been assumed here that U is independent of time-the gust problem mentioned 
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in the last paragraph of Q 1 can be simulated by impulsive motions of the body 
itself. On integrating (8) we get 

where (T = 7- 6 -  1, and (2) can be put into a similar form, viz. 

exp[-s(6-1)]v(l,.f-5+1) = exp[-(.i-S)]u(l,a) (1 < 5, o < S) 
(otherwise), 

V ( 5 , . i )  = {o 

(11) 
where .i zz r/r2, B = .i-g+ 1, 

and the damping length 1/e has been non-dimensionalized. Figure 5 illustrates 
equations (10) and (11). 

r - -n 

[ = 1  < = ? + I  

r, o 

Case 7 >2 U * O  L' = 0 

5 = 1  6 = 0  

FIGURE 5. Convection of the perturbations. 

On the body the boundary condition can be expressed as a prescribed direction 
of flow, viz. 

where the perturbation 8, is related to the small unsteady velocity of the surface 
normal to itself, say v, by 8, = v/qo (see figure 6). For a rigid body the only motion 
allowed by the restriction of symmetry about y = 0 is motion along this axis; 
suppose the perturbation velocity is u(t),  then v = - u sin O0 and 

8, = - u(t) (sin O0) /qo .  (13) 

For a sudden gust of magnitude V convected on to the body with velocity U we 
take 

u(t)  = - VU(t ) ,  (14) 

where U ( t )  is the unit function. The simplest non-rigid motion that can be con- 
sidered requires a hinge a t  the front stagnation point B (see figure 7). Suppose 
the body is a wedge of small angle 8,+B,(t), then one can use the linearization 

8, = aew/qo = a t )  ( rL/2U)  ( 5 - 6 0 ) ,  (15) 

on replacing # by Us in ( 5 ) ;  a and 5 are defined in figure 7. 
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Our mixed boundary-value problem is thus: 

On 

where 

rc 
FIGURE 7. Hinged wedge. 

(6, r )  are prescribed functions, is a g. ren constant, viz. 

(17) 0 - Q  1 -  (20- - _ -  ; l o g ( l + 4 ,  

and r, and u satisfy (10) and (11). In  addition we have the conditions near 
infinity lim ~ ( a )  = 0, 

lim a~(cc)  = - M ,  
a+, 

a+, 

where M is a constant. The first of these follows immediately from (3) and the 
chosen values q ,  = U ,  8, = 0,  while the second is easily verified to be the 
restriction on the nature of the sink at infinity-if M = 0 the sink for the steady 
component of flow also vanishes, and the cavity is closed. 

Returning to the point made at the end of the first paragraph of this section, 
we note that, while S is a fixed point, the cavity length is free to change by the 
introduction of u (cf. figure 3). Of course, if there are no bubbles in the wake, 
u will be localized near 6 = 1, and in this case its effect can be incorporated in 
a singularity at S as described later. The point S is simply the point chosen to 
mark the change from one type of boundary condition to the other. 
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3. The solution to the boundary-value problem 

we can write down (see p. 148 of Woods 1961) 
We now seek a complex function ~ ( a )  satisfying (16) on /3 = 0. As a first step 

(20) 

where 0, and Q, denote values on p = 0, and are functions of 6 and 7.  Equation 
(18) is satisfied by (20), while (19) requires that 

Bearing in mind that (E2 - l ) f  takes the values &2- l), id( 1 - t2) and - d(g2 - 1) 
on 1 < [ < 00, - 1 < 5 < 1, and -00 < 5 < - 1 respectively, we may write (20) 
in the alternative forms 

It is also convenient to rewrite the equation containing M as 

Equation (21) shows that, unless 9 is zero, there is a singularity at a = 1, the 
rear end of the cavity. However, we shall not put 9’ equal to zero at this stage, 
for to do so would be losing a vital degree of freedom in our solution. Alternatively, 
we could put Y = 0, and re-introduce a single degree of freedom by making either 
Q, or 0, large near < = 1, but the outcome will be equations of the same form as 
(21) to (24). For example, with 9’ zero in (21) and (23) and with 0, replaced by 
u + u*(U((- 1) - U(5- 1 - E ) ) ,  E < 1, where U([) is the unit function, the choice 
v* = - 774(2~)9’, returns one to the present forms of (21) to (24) (to the lowest 
order in E )  except that in ( 1 , ~ )  0, is now u. This provides the physical interpreta- 
tion of Y shown in figure 8. 
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In  the g plane defined by ( 6 )  and drawn in figure 4, (21), (23) and (24) take the 
neater forms 

+Io" cosy' - cos 5 )+iYtan&[, (25) 

where now 8, is the boundary value of 8 over -m < < - 1, and u refers, as 
usual, to the wake, 1 < 6 < co. In  these equations 7' and y' are running variables 
on y = 0 and 7 = 0, respectively, and 6 is a general point in the plane. 

, 

I 

FIGURE 8. The singularity at 8. 

The point at infinity in the z plane is at 7 = co, and in this neighbourhood (25) 

x = 2M eic + 3N e2ic + O(e3iC), (28) 

where i2,~0~2y'dy'-Y. (29) 

has the expansion 

Now by (3), (5) and (6), near infinity, 

as dw = QrULda = $rULsin<dc. (30) 

z N @L{ - * e-ic+iMC+ C +  (A?+ N - 9) eic+. . .}, (31) Hence 

where C is a real constant of integration. Notice that the imaginary part of z 
jumps from zero to 4nrLM as one moves from A ,  at 7 = co, y = 0, to D, a t  
7 = co, y = n; thus the width of the steady wake is 

yo = &-rLM, 
as marked on figure 8. 
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At this stage it is convenient to separate the equations into their steady and 
unsteady components, and for this purpose an outline of the theory of steady 
cavitating flow is given in the next section. 

4. Steady cavitating flow 

simplicity. By (16), in steady flow (25 )  to (27) give 
The results will be expressed in terms of the variable {, with some gain in 

.% = Q l + p o d l / ,  = o  (34) 

2M = 3+l/7'BocoshTdq, = o  (35) 

where yo is the value of 7 at the front stagnation point B, corresponding to to. 
m t o  + 1) = (4c - 4B)/fJl = L (36) 

BY ( 5 )  

say, where for slender bodies the distance 1 is approximately equal to the length 
of the wetted surface from B to C. Then with 

m2 = l/(Z+ L),  (37) 

a measure of the ratio of this characteristic body dimension to a distance 
approximately equal to the whole length of wetted and cavity surface, we have 

which will be needed shortly. 
The drag coefficient based on a characteristic length c is 

where V0 is the whole of the wetted surface of the body. In  steady flow it follows 
from (l), (3),  ( 7 )  and (30) that 

on taking advantage of the fact that da = dZ on the profile. In the 5 plane, 
R e  (xo  - Ql) = 0 on the real axis, and consequently xo can be continued analytic- 
ally to the lower half plane by xo(c)  = -z) + 2Q1, then the second integral in 
(40) can be taken to be the integral of exp ( x o -  Q,) (da/d<) along the conjugate 
contour to F0 in the lower half plane (see figure 9). Then with V = Vo + go, (40) 
becomes 

c,, = ---+ Q Jw exp (xo - w sin C ~ C .  

Clearly V can now be deformed into the large contour shown in figure 9. From 
the expansion (38) near V,, and its analytic continuation to %?,, we find that like 
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the contributions from %n and %;, the contributions from %a and qm cancel. 
We are left with a single closed loop about S. At 5 = rr + z ,  we find 

xO-Ql = - 2 i Y o ~ + i ~ b O + O ( z 3 ) ,  (41 ) 

where 

Thus exp ( x o -  Q,) sin 6d5 = exp ( - 2 i 9 3 )  { - z -  iboz2+ (@: + Q ) 2 3 + .  ..)ax, 
and as I exp ( - 2 i q / z )  zn-lclz = 2rri( - 2 iq )" /n  for a loop enclosing S ,  we get 

C,, = 2rrr2(L/c)Y${1 +gb,$+Q(bg++)Y;+ ...}. (42) 

There is little point in expanding further because the relation between I and the 
actual wetted length, c say, while near unity for slender bodies, is not easy to 

FIGURE 9. Contour for drag coefficient. 

determine for bluff bodies. For the normal plate, I NN 2c/(4 + n) (see p .  446 of 
Woods 1961). 

In  steady flow the coefficient N defined in (29) is 

(43) No = ;Io Oo(cosh 2y + coshq) dy, 

provided Af = 0. In this case we can show that No is closely related to the cavity 
volume V,. Let C be the contour enclosing the body, the cavity and the singularity 
S; then 

1 "  

where 

is a volume rather smaller than that of the body alone that we shall ignore. 
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Now we can replace C by grn (see figure 9), and make use of (28) and (31), plus 
the restriction M = 0, to find 

y0 = trL2N0 (44) 

as an approximation to the volume. 
With very long cavities m is small and v0 M 2m. Then, defining an average 

body slope by 
(45) 

we find to first order in m that (34), (35), (42) and (44) reduce to 

and V, = mL20, ( M  = 0). (47) 

It is interesting to note that the singularity Yo can be eliminated by introducing 
a sting of width 2yo = TrLM M 2rB,llm into the rear of the cavity, and that this 
halves the cavitation number for a given cavity length. 

5. The pressure and drag in unsteady flow 
At a point 6 on the wetted surface, the linear perturbation form of ( 7 )  gives 

P ( L  7) -Po(() = P 4 X )  m.7 71, (48) 

where 

and the dot denotes the derivative with respect to r.  At a point a! on the real axis 
in (-03, - l),  it  follows from (16) and (22) that 

(50)  

and a corresponding result can be written down from (21). Integration of each 
term in (50) by parts, differentiation with respect to 7, integration with 
respect to a7 and finally the addition of the result to the formula for r derived 
from (21) leads to 

where 

d = Y - 8 and I has G' for its integrand, where G' is like G except 

29 Fluid Mech. 26 



450 L. c. Woods 
I. 
- 1  

that (5, - 1) is replaced by (1 - t2). As J G' d[ = 0, it follows from ( 8 )  that I = 0. 

Differentiating (1 1) we find r2ir = - EU - auji36, hence 

u + S : o d t  = u-Y+const., 

-1 

where 

and (51) can be written 
(54) 

(55) 

At a = - 1, F = F* say, and (48) and (55) give the cavity pressure fluctuations: 

By (3), (B), (39) and (48) the unsteady component of the drag coefficient is 

where F can be written as an analytic function of y by putting 

in (56). The contour %, can now be replaced by %i+%'w+%'s as defined in 
figure 10, the contributions from the real axis and from %?;+%,, being zero. 
Near 5 = 77 it follows from (41) and (55) that 

1 
-Fe-xosin[d< = exp ( 2 i ~ o / ~ ) ( ~ o + P 1 ~ + O ( ~ 2 ) } d ~ ,  
r 

Po, being constants, and, provided 8 < 0, the contour integral of this quantity 
about the indentations gS and %&--both in the upper half-plane-vanishes in 
the limit as the radii of the indentations tend to zero. That is very unlikely 
to be positive in a practical case can be seen from the second equation of (46). 
From an equation like ( 2 8 )  for xo and (55 )  we easily evaluate the contribution 
from V,, and so find the result 

where by (16) and (23) 

Similarly, from (24) and the fact that M is constant, we have 
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and on combining (57) to (59) we find the alternative form 

(60) 
It remains to calculate expressions for u and I?c from the pair of integral 

equations (58) and (59), plus some hypothesis from which the value of d can 
be found. 

- 7 7  0 7l 

FIG~JRE 10. Contour for unsteady component of drag coefficient. 

6. Solution of the integral equations for I?, and u 

Let 

then by (lo),  (ll),  (58) and (59) can be written in the forms 

on making use of unit functions to cope with the inequalities in (10) and (11). 
Let u* and I?,* denote the functions U(x)u(l,x) and U(x) I?,( - 1, x), and denote 
the two-sided Laplace transform of u* and I?: by 9 ( u * )  and 9 ( I ? z ) ;  then, on 
making use of some results given by van der Pol & Bremmer (1950), we can 
transform these equations with respect to r to find 

9 ( I ? z )  e-* .Io(p) - ( rz /m)  9 ( u * )  e@ KO($) = 9 ( 6 )  - S?(ao), (62) 

- s(rz) e-*P0(24 + .Il(P)>-- ( r ' i r )  Z ( U * )  e" -M$) -KO($)} = Z f a o )  + 9 ( a l L  
(63) 

where $ = r2p+e,  (64) 

and I ,  K are the usual cylinder functions. The functions 9 ( a o )  and S?(al) will be 
known when the motion of the body is prescribed, while &?(I?;), 9 ( u * )  and 9 ( d )  

29-2 
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are three unknown functions. Thus a hypothesis is needed to enable us to close 
the system. 

Let Q be the rate at which the unsteady component of cavity volume is passing 
into the wake; then Q = 2U Sy*, where 28y* is the unsteady increment to the 
displacement thickness a t  S (see figure 11). Now 

m 

udx ,  as Sy, = 0 

and u z dy/dx.  Thus . .  

Q(r)  = 2USy*(r )  = - ULrJlw u(6, f) d t ,  

where .i = r/r2.  Let V ( r )  denote the cavity volume; then conservation of volume 
requires that V = - Q. The hypothesis we shall adopt is that a functional relation 
exists between v(7 + 2) and the pressure increment pc -pl = pq2P*(7). The time 

-L - 
S 

FIGURE 11. Convection of cavity volume. 

delay here is introduced on the reasonable assumption that V cannot respond 
to pressure change immediately, but must wait for the reaction of the re-entrant 
jet at  S to modify the flux of bubbles into the wake, and that in turn the jet 
strength J can be changed only by the arrival of a wave travelling downstream 
along the cavity wall. Initially then, on this model, a pressure increase simply 
modifies the flow direction at  separation, and this disturbance is convected along 
the cavity walls in such a way to keep V constant. Only when this wave reaches 
X does J change, and then Q can also change. 

The problem now is to find the relation between P(r + 2) and F*(7). In  view of 
the complexity of the flow near the re-entrant jet, there seems little chance of 
doing more than writing down an empirical relationship. The simplest is 

2 u L k p * ( 7 )  = P(r + 2 )  = - Q(7 + 21, 

where k is an empirical constant. Hence 

2ULkP*(r )  = - Q(r + 2 )  = U L T / ~ ~  u (6, y) d t ,  (65) 

and on transforming this with respect to 7 we obtain 

r3  
2 k 9 ( P * )  = - e2p 9( u*). 

r2p + E 

Now returning to the question of the additional hypothesis needed to close 
(62)-( 64), we can identify four distinct possibilities: 

(i) A strongly damped wake, i.e. u z 0. Large E in (62) requires u z  0, and so 
by (66) k = 0. We expect this with natural cavities, where the re-absorption of 

(66) 
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wake bubbles is rapid. Incidentally if we set d = 0 and make E large the term con- 
taining U* in (63) vanishes, whereas the corresponding term in (62) contains 
u*/,,k, and-with u* large-takes over the role of the singularity. This gives an 
interpretation of d rather similar to that shown in figure 8. 

Omitting terms involving u* from (62) and (63), we get 

a-3 = - {=wao) + P ( U l ) )  eP/Po(P) + U P %  (67) 

a4 = - a.1) + { = m o )  + = w 1 ) )  W(  - iP ) ,  (68) 

where W ( 4  = J l ( Z ) / { J l ( 4  - i Jo(Z) ) .  (69) 

1 -0 I I I I I I 1 I 

- 
- 
- 
- 
- 

0.4 - - 
1L - - 

0.2 - - 
- - 

- 
- 0.2 - - 

- - 
- 0.4 I I I I I I I I 

FIGURE 12. The function h ( ~ ) .  

Let h(7) be the function having W (  - i p )  as its transform, i.e. 

then (68) can be inverted to the form 

d = - U l ( 7 )  + (Uo + U1) h(7 - 7*)  d7*, J: 
a similar treatment holding for (67). With the notation 

(56) and (57) can be written for the present case in the forms 

Pc-Pl = Pd(d-ao-co),  
c, - c,, = - 27r(L/c) r(d +a, + C J .  

(72) 

(73) 

The function h(7) is shown in figure 12, and a short table is provided in table 2. 
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In  the light of the discussion of (65)  we should expect this theory to hold quite 
well for all types of cavity for impulsive motions in the time interval 0 < T < 2,  
before the wave impinges on S and alters the entrainment rate. 

(ii) Constant pressure cavity, i.e. F* M 0. This case ( k  = 00) requires a high rate 
of vaporization or, equivalently, a rapid change in the rate of air injection, com- 
pared with the rate at which the cavity volume is changing. If we put r M 1 and 
E M 0, i.e. assume an undamped wake as one may expect with a ventilated cavity, 
then (72)  and (73)  also apply here, so d = aO+al, and 

CD - CDo = - 2n(L/c)  r(ao + a1 + co + cl). (74)  

(iii) No singularity, i.e. d = 0. This possibility, not contained as a special case 
of (66) ,  may be worth considering. With an undamped wake (72)  and (73) ,  in 
which d is now zero, are still applicable. Which of (ii) and (iii) is the more accurate 
model for times T > 2 can only be resolved by further experiments. 

(iv) A reacting wake. In  this case an additional physical phenomenon provides 
a new relation, like (65) .  For example, the pumping action illustrated in figure 2, 
which occurs inside rather than outside the cavity, is a phenomenon distinct 
from the convection of disturbances that forms the physical basis of the theory 
leading to (62)  and (63).  This case is discussed in the next section. 

7. Resonating cavities 
First we note that the above theory can be modified to deal with oscillatory 

motions of long duration as follows. Let v be the real frequency in radians per 
second and define a reduced frequency by vt = WT, so that 

w = Lv/2Ur.  (75)  

Now suppose that ao(T) = tio eiPt = ti, eiwT, tio being a complex amplitude, and that 
similar expressions for al@) and r,"(T) are adopted. As u* is generated a t  X and 
must have a phase fixed in relation to the waves incident on X from the cavity, 
and independent of w (see discussion of (65) ) ,  i t  is necessary to write 

u* = 6" eiw(7-2)a 

Now 9 ( a o )  = &,p/(p - i w ) ,  and the inverses of (62)  and (63)  are obtained directly 
on replacing 9 ( a o )  by Go, etc., and p by iw .  For simplicity we take r M 1 and 
E M 0, and then find from the inverses of (62)  and (63)  that 

6* = ineiw((Jo+iJl) (ao-6)-Jo(a,+al)), (76)  

where the omitted argument of the Bessel functions is w.  Similarly (66)  gives 

kP* = ( -  i / 2 w )  6". (77)  

Once G* is known the original function can be deduced from (1 1) : 

u ( 6 , ~ )  = u( 1 , ~  - 6 + 1) = G* e--2iw &(7--1+1) = G* eMr-t-1), 

Now the experiments described in the introduction show resonance with the 
body held fixed. In this case a. and a, are zero, and (76) reduces to 

D* = wneiw(J1-iJo)P*, (78) 
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as by (56) and (72) it is now the case that i = F*. As kis  real in (77), (77)  and (78) 
are compatible only if w satisfies the equation 

sin wJ,(w) + cos wJl(w) = 0, 
and if k has the value 

k = -n-J0(w)/(2c0sw). 

The first six roots of (79) and the corresponding values of k are shown in table 1. 
The roots are given closely by w, = 1-97 +n(.n- 1). Notice that k is always 
positive and varies only slowly with w ,  in fact like 1/&. An examination 
of figure 2 reveals that the physical mechanism there described keeps 
pC-pl = pq!F* 90" behind u*, thus P*cc -iO*, confkming (77). 

Experiment Hydrofoil O, 2.7 5-1 8.2 11.4 14.7 - 
Flat plate w, 2.5 5.0 8.5 11-2 14.1 - 

Theory w,, 1.97 5.11 8.25 11.39 14.53 17-67 

k ,  0.98 0.57 0.45 0.38 0.33 0.32 

TABLE 1. Resonance frequencies 

- 

It must be admitted that estimating the length of the cavities from the results 
given in the paper by Silberman & Song is not easy, and that the good agreement 
achieved between the present theory and experiment for the resonance fre- 
quencies (table 1) may possess some subjective element. Still the error range for 
the experiments certainly includes the theoretical figure, except possibly for the 
first-stage cavity. Silberman & Song mention that the convection velocity of 
cavity waves is rather less than q1 for some first-stage cavities, so perhaps some 
discrepancy is to be expected. 

A somewhat different explanation of resonating cavities has been given by 
Song (1962), who concluded by a simple argument that w, = n-n. His treatment, 
which depends on the presence of outer bounding free surfaces to provide the 
resonance, treats the flow pattern as equivalent to an oscillating cylindrical gas 
bubble separated from another gaseous region of infinite extent by an annulus of 
liquid. The experimental evidence seems insufficient to distinguish the two 
theories. Free boundaries could be important in initiating resonance without in 
fact being essential to its maintenance. 

8. Stability of bodies in cavitating flow 

follows that 
For simplicity we put E = 0 and r = 1. Then from (56), (72), (62) and (63) it 

( 2 k  e-p/n-) 2 ( a o +  co) + I. 2(a l )  - Il 2 ( a o )  
(2k  e-p/n-) - (I ,  + 11) 2 ( d )  = 2 

where the argument of the cylinder functions is p ,  and we have made use of the 
relation p{Io(p) Kl (p)  + Il(p) K,(p)} = i. For oscillatory motions we replace 
2 ( d ) ,  S ( a , )  . . . by 2, &,, . . . and p by iw ; then the vanishing of the denominator in 
(81) is the condition for resonance already studied in 8 7. Equations (72) and (73) 
give pc - pl and CD - CDo. 
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Suppose, for example, a rigid body has a perturbation displacement given by 
x = x 2 ( r ) ;  then,by (9)and(13),02 = -k2(2U/L)sin0,/q,. Then from (61)and(71) 

the second form being for oscillatory motions when x2 = 6? eiuT, and where 

are numbers depending only on the steady flow. With long cavities the front 
stagnation point [ = to is close to - 1, and we find 

A, z A,, Go z C, E 0. (84) 

With oscillatory motions (8 1) and (82) give 

2E e-io(oC, - iAo)/n - J,Ao + , 
i J A  1-  4 = 2w - e i @ T  

L Y 2E e-iuln + J, + iJ1 
Substituting into (73) and adopting the approximation (84), we find that the 
component of C, - CDo in phase with the velocity iw2eiuT is negative only if 

(85)  - (2/77) k(coswJ,(w) - 2 sinwJ,(w)) > ( Z E / T ) ~  + {J,(W))~. 

This is the condition for stability of the body, and it does not appear that it can 
be satisfied for positive values of k .  

7 h 

0.0 0.500 
0.2 0.734 
0-4 0.868 
0.6 0.889 
0.8 0.826 
1.0 0.710 
1.2 0.554 

7 

1.4 
1.6 
1-8 
2.0 
2.2 
2.4 
2.6 

h 

0.353 
0.117 

-0.112 
- 0.268 
- 0.298 
- 0.204 
- 0.047 

7 

2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 

h 

0.087 
0.139 
0.098 
0.022 

- 0.034 
- 0.040 
- 0.012 

7 

4.2 
4.4 
4.6 
4.8 
5.0 
5-5 
6.0 

TABLE 2. The function h(r) 

h 7 h 

0.015 6.5 0.001 
0.016 7.0 0.011 

-0’005 7.5 -0.016 
-0.024 8.0 0.015 
-0.021 8.5 -0.009 

0.028 9.0 0-000 
-0.016 

9. Growth of drag due to a sudden change in velocity 
If attention is confined to the time interval r < 2,  then it is reasonable to 

assume that u = 0-see discussion in 8 6.  Then with ( 2 U r / L ) k 2  = - VU(r) ,  so that 
the new upstream velocity becomes ( U +  V ) ,  we find 

Then by (70), (72) and (73) 
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which can be plotted with the aid of figure 12. For long cavities and slender 
bodies it follows from (45) that (A,  + A,) M 4mOa/n. 

It must be remembered that these results can be used only if 7 < 2. At longer 
times the cavity changes its volume and the pressure and forces tend to the values 
appropriate to the new upstream velocity ( U + V ) .  
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